The Thermal Decomposition Process of Calcium Sulfite

Ryoko Matsuzaki, Hagio Masumizu, Nagisa Murakami, and Yuzo Saeki Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259,

Nagatsuta-cho, Midori-ku, Yokohama 227

(Received April 27, 1977)

The thermal decomposition of calcium sulfite at temperatures below 880 °C in an argon stream was examined. Also, the reaction between calcium sulfate and calcium sulfide, which were formed during the decomposition process of calcium sulfite, was examined. The thermal decomposition process of calcium sulfite can be represented as follows: on heating calcium sulfite, the reaction, CaSO₃→CaO+SO₂, occurs above about 600 °C. Above about 680 °C, the reaction, 4CaSO₃→3CaSO₄+CaS, occurs besides the above reaction. Furthermore, the reaction between calcium sulfate and calcium sulfide which are formed during the decomposition process of calcium sulfite, 3CaSO₄+CaS→4CaO+4SO₂, occurs above about 780 °C.

As regards the thermal decomposition process of calcium sulfite, Foerster and Kubel¹¹) have reported that the reaction, $4\text{CaSO}_3 \rightarrow 3\text{CaSO}_4 + \text{CaS}$, occurs above about $600\,^{\circ}\text{C}$, and that the reaction, $\text{CaSO}_3 \rightarrow \text{CaO} + \text{SO}_2$, occurs besides the above reaction above about $650\,^{\circ}\text{C}$ in a nitrogen stream. Zawadzki²¹) has briefly reported that the reaction, $4\text{CaSO}_3 \rightarrow 3\text{CaSO}_4 + \text{CaS}$, occurs above about $600\,^{\circ}\text{C}$, and that the reaction, $3\text{CaSO}_4 + \text{CaS} \rightarrow 4\text{CaO} + 4\text{SO}_2$, occurs above about $800\,^{\circ}\text{C}$. On the other hand, Ketov and Nichkovskii³³) have reported that the reactions, $\text{CaSO}_3 \rightarrow \text{CaO} + \text{SO}_2$, $4\text{CaSO}_3 + 2\text{SO}_2 \rightarrow 4\text{CaSO}_4 + \text{S}_2$, and $4\text{CaO} + 3\text{S}_2 \rightarrow 4\text{CaS} + 2\text{SO}_2$, take place successively over the temperature range of $600\,^{\circ}\text{C}$ in a nitrogen atmosphere.

In this report, the thermal decomposition process of calcium sulfite at temperatures below 880 °C will be described.

Experimental

A sample of $CaSO_3$ was prepared by dehydrating $CaSO_3 \cdot 1/2H_2O$ at 330 °C in an argon stream. The $CaSO_3 \cdot 1/2H_2O$ was prepared from a guaranteed reagent, $CaCO_3$, by the method based on the report of Kelly and Moore.⁴⁾

The results of the chemical analysis of the CaSO₃ obtained were Ca 33.3₈, SO₃ 66.4% (Calcd for CaSO₃: Ca 33.36, SO₃ 66.64%). The Ca content in the CaSO₃ was determined by complexometric titration⁵⁾ after the CaSO₃ had been dissolved in dilute hydrochloric acid. The SO₃ content in the CaSO₃ was determined by decomposing the CaSO₃ with

Table 1. X-Ray diffraction data of CaSO₃

This work				ASTM card			
$\widehat{d({ m \AA})}$	I/I_1	d(Å)	$\widehat{I/I_1}$	$\widehat{d({ m \AA})}$	I/I_1	d(Å)	I/I_1
5.61	5	2.468	10	5.50	2	1.63	2
4.93	5	2.417	20	3.80	5	1.57	5
3.66	10	2.362	10	3.49	5	1.47	15
3.51	15	2.338	10	3.12	100	1.40	2
3.24	55	2.259	10	2.90	60	1.28	15
3.07	100	2.151	25	2.79	5		
2.98	60	2.006	20	2.71	5		
2.92	25	1.824	20	2.61	5		
2.805	55	1.791	10	2.53	80		
2.747	55	1.647	5	2.34	20		
2.644	60	1.585	5	2.11	40		
2.592	25	1.388	5	1.93	15		
2.536	75			1.82	15		

hydrochloric acid to convert the SO₃ to SO₂ gas in an argon atmosphere. The amount of SO₂ gas evolved was determined by volumetric iodometry.⁶⁾

The X-ray analysis of the sample was performed with an X-ray powder diffractometer, equipped with a proportional counter, using Ni filtered Cu radiation. The X-ray diffraction data of the CaSO₃ are shown in Table 1. The data reported by Matthews and McIntosh,⁷⁾ which are cited in the ASTM X-ray diffraction data file, are also shown in Table 1.

The thermogravimetry(TG) and differential thermal analysis (DTA) were performed in an argon stream. A heating rate of 2.5 °C/min was employed. The sensitivity of the quartz helix used for TG was about 0.14 mg/0.01 mm. α -Al₂O₃ was used as a reference for DTA.

Results and Discussion

The TG and DTA curves of CaSO₃ on heating are shown in Fig. 1. It was observed that the weight loss on heating CaSO₃ was accompanied by the evolution of SO₂ gas. The results of the X-ray analysis⁸⁾ of the samples heated up to Points A(800 °C) and B(1000 °C) are also shown in Fig. 1.

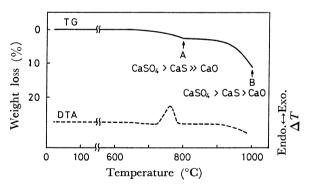


Fig. 1. TG and DTA curves of CaSO₃ on heating in an argon stream.

From the facts that CaO was observed in the sample heated up to Point A, and that SO_2 gas was evolved during the weight loss, it was considered that the reaction, $CaSO_3 \rightarrow CaO + SO_2$, $^{1,3)}$ occurred. Also, an exothermic peak was observed at about 760 °C in the DTA curve, and the formations of $CaSO_4$ and CaS were observed in the sample heated up to Point A. From these facts, it was considered that the reaction, $4CaSO_3 \rightarrow 3CaSO_4 + CaS$, $^{1,2,9)}$ occurred besides the above reaction.

Furthermore, from the facts that the X-ray diffraction intensity of CaO in the sample heated up to Point B was stronger than that in the sample heated up to Point A, and that the evolution of SO_2 gas was observed during the weight loss from Point A to Point B, it was considered that the reaction, $3CaSO_4+CaS\rightarrow 4CaO+4SO_{22}$) occurred.

To clarify the thermal decomposition process of CaSO₃ in more detail, 1 g of CaSO₃ was placed in a quartz boat of 48 mm length, and decomposed in a straight quartz tube (26 mm i. d. and 300 mm heating length) at an argon flow-rate of 100 ml/min for 3 h under isothermal conditions at temperatures below 880 °C. The product obtained in the boat was examined by X-ray analysis. Also, the amount of SO₂ gas formed by the decomposition of CaSO₃ was examined. The results are shown in Table 2.

Table 2. Results of heating experiments on CaSO₃

		
Heating temp (°C)	Amount of SO_2 formed (mg)	Sample in the boat
580	_	CaSO ₃
600	det.	CaSO_3
620	3	${ m CaSO_3}$
640	4	CaSO₃≫CaO
660	10	CaSO₃≫CaO
680	19	$CaSO_3 > CaSO_4 > CaS \gg CaO$
700	33	$CaSO_4>CaS\gg CaSO_3>CaO$
720	31	$CaSO_4 > CaS \gg CaO = CaSO_3$
740	28	$CaSO_4>CaS\gg CaO$
760	19	CaSO₄>CaS≫CaO
780	14	CaSO ₄ >CaS≫CaO
800	18	CaSO₄>CaS≫CaO
840	37	CaSO ₄ >CaS>CaO
880	83	CaSO ₄ >CaS>CaO

From the results that the formations of SO_2 gas and CaO were observed at $600-660\,^{\circ}\text{C}$, it was clarified that the reaction, $CaSO_3 \rightarrow CaO + SO_2$, occurred above about $600\,^{\circ}\text{C}$. Above $680\,^{\circ}\text{C}$, the formations of $CaSO_4$ and CaS in addition to CaO were observed; the $CaSO_3$ decreased with the increase in the temperature and was not observed above $740\,^{\circ}\text{C}$. From these results, it was made clear that the reaction, $4CaSO_3 \rightarrow 3CaSO_4 + CaS$, occurred above about $680\,^{\circ}\text{C}$ in addition to the reaction, $CaSO_3 \rightarrow CaO + SO_2$.

Above 800 °C, the amount of SO_2 gas formed was again increased; the X-ray diffraction intensity of the CaO in the product also increased with the increase in the temperature. These facts were considered to indicate a reaction between the $CaSO_4$ and CaS formed during the decomposition process of $CaSO_3$, $3CaSO_4 + CaS \rightarrow 4CaO + 4SO_2$. Therefore, the reaction between $CaSO_4$ and CaS was examined.

A sample of CaSO₄ was prepared by adding an aqueous CaCl₂ solution to an aqueous Na₂SO₄ solution.¹⁰⁾ Both the salts used were guaranteed reagents. The resulting precipitate was washed with water and dehydrated at 800 °C. A sample of CaS was prepared by heating the CaO formed by the thermal decom-

position of a guaranteed reagent, CaCO₃, in a stream of H₂S gas at 1000 °C.¹¹⁾

One g of a mixture of $CaSO_4$ and CaS (in a molar ratio of $CaSO_4$: CaS=3:1) was heated at a specified temperature below 880 °C for 3 h in an argon stream. The product obtained in the boat and the amount of SO_2 gas formed were examined. The results are shown in Table 3.

Table 3. Results of heating experiments on $(3 CaSO_4 + CaS) \label{eq:caso}$

Heating temp (°C)	Amount of SO ₂ formed (mg)	Sample in the boat
760		CaSO ₄ >CaS
780	3	CaSO₄>CaS≫CaO
800	9	CaSO ₄ >CaS≫CaO
840	21	CaSO ₄ >CaS≫CaO
880	71	CaSO ₄ >CaS>CaO

The formations of SO_2 gas and CaO were observed above 780 °C, and the amount of SO_2 gas formed increased appreciably with the increase in the temperature. Also, the X-ray diffraction intensity of CaO in the product increased with the temperature. These results made it clear that the reaction, $3CaSO_4+CaS \rightarrow 4CaO+4SO_2$, occurred above about 780 °C.

From the above-mentioned experimental results, the thermal decomposition process of calcium sulfite can be represented as follows: on the heating of calcium sulfite, the reaction, $CaSO_3 \rightarrow CaO + SO_2$, occurs above about $600~^{\circ}C$. Above about $680~^{\circ}C$, the reaction, $4CaSO_3 \rightarrow 3CaSO_4 + CaS$, also occurs. Furthermore, the reaction between calcium sulfate and calcium sulfide which are formed during the decomposition process of calcium sulfite, $3CaSO_4 + CaS \rightarrow 4CaO + 4SO_2$, occurs above about $780~^{\circ}C$. The thermal decomposition process of calcium sulfite revealed in this work differs from the previously reported processes mentioned above. $^{1-3}$)

References

- 1) F. Foerster and K. Kubel, Z. Anorg. Allg. Chem., **139**, 261 (1924).
 - 2) J. Zawadzki, Z. Anorg. Allg. Chem., 205, 180 (1932).
- 3) A. N. Ketov and V. V. Nichkovskii, Nauch, Doklady Vysshei Shkoly, Khim. i. Khim. Tekhnol., 1958, 667; Chem. Abstr., 53, 5840 (1959).
- 4) K. K. Kelly and G. E. Moore, J. Am. Chem. Soc., 66, 293 (1944).
- 5) G. Schwarzenbach, "Complexometric Titrations," Interscience Publishers (1957), p. 63.
- 6) "Scott's Standard Methods of Chemical Analysis," 5th ed, D. Nostrand Co. (1939), p. 926.
- 7) F. W. Matthews and A. O. McIntosh, Can. J. Res., **26 B**, 747 (1948); ASTM card 4-599.
 - 8) ASTM cards 4-777, 8-464, 6-226.
- 9) K. Schwitzgebel and P. S. Lowell, Environ. Sci. Technol., 7, 1147 (1973).
- 10) M. Copisarow, J. Chem. Soc., 123, 796 (1923).
- 11) J. Zawadzki, K. Kossak, and H. Narbut, *Przemysl. Chem.*, **5**, 225 (1921); *Chem. Abstr.*, **17**, 1692 (1923).